Source code for pyts.approximation.sfa

"""Code for Symbolic Fourier Approximation."""

# Author: Johann Faouzi <johann.faouzi@gmail.com>
# License: BSD-3-Clause

from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import Pipeline
from sklearn.utils.validation import check_is_fitted
from .dft import DiscreteFourierTransform
from .mcb import MultipleCoefficientBinning

import sklearn
SKLEARN_VERSION = sklearn.__version__


[docs]class SymbolicFourierApproximation(BaseEstimator, TransformerMixin): """Symbolic Fourier Approximation. Parameters ---------- n_coefs : None, int or float (default = None) The number of Fourier coefficients to keep. If None, all the Fourier coeeficients are kept. If an integer, the ``n_coefs`` most significant Fourier coefficients are returned if ``anova=True``, otherwise the first ``n_coefs`` Fourier coefficients are returned. If a float, it represents a percentage of the size of each time series and must be between 0 and 1. The number of coefficients will be computed as ``ceil(n_coefs * (n_timestamps - 1))`` if ``drop_sum=True`` and ``ceil(n_coefs * n_timestamps)`` if ``drop_sum=False``. n_bins : int (default = 4) The number of bins to produce. The intervals for the bins are determined by the minimum and maximum of the input data. It must be between 2 and 26. strategy : str (default = 'quantile') Strategy used to define the widths of the bins: - 'uniform': All bins in each sample have identical widths - 'quantile': All bins in each sample have the same number of points - 'normal': Bin edges are quantiles from a standard normal distribution - 'entropy': Bin edges are computed using information gain drop_sum : bool (default = False) If True, the first Fourier coefficient (i.e. the sum of the time series) is dropped. If False, the real part of the first Fourier coefficient is kept. anova : bool (default = False) If True, the Fourier coefficient selection is done via a one-way ANOVA test. If False, the first Fourier coefficients are selected. norm_mean : bool (default = False) If True, center the data before scaling. If ``norm_mean=True`` and ``anova=False``, the first Fourier coefficient will be dropped. norm_std : bool (default = False) If True, scale the data to unit variance. alphabet : None, 'ordinal' or array-like, shape = (n_bins,) Alphabet to use. If None, the first `n_bins` letters of the Latin alphabet are used if `n_bins` is lower than 27, otherwise the alphabet will be defined to [chr(i) for i in range(n_bins)]. If 'ordinal', integers are used. Attributes ---------- bin_edges_ : array, shape = (n_bins - 1,) or (n_timestamps, n_bins - 1) Bin edges with shape = (n_bins - 1,) if ``strategy='normal'`` or (n_timestamps, n_bins - 1) otherwise. support_ : array, shape = (n_coefs,) Indices of the kept Fourier coefficients. References ---------- .. [1] P. Schäfer, and M. Högqvist, "SFA: A Symbolic Fourier Approximation and Index for Similarity Search in High Dimensional Datasets", International Conference on Extending Database Technology, 15, 516-527 (2012). Examples -------- >>> from pyts.approximation import SymbolicFourierApproximation >>> from pyts.datasets import load_gunpoint >>> X, _, _, _ = load_gunpoint(return_X_y=True) >>> transformer = SymbolicFourierApproximation(n_coefs=4) >>> X_new = transformer.fit_transform(X) >>> X_new.shape (50, 4) """
[docs] def __init__(self, n_coefs=None, n_bins=4, strategy='quantile', drop_sum=False, anova=False, norm_mean=False, norm_std=False, alphabet=None): self.n_coefs = n_coefs self.drop_sum = drop_sum self.anova = anova self.norm_mean = norm_mean self.norm_std = norm_std self.n_bins = n_bins self.strategy = strategy self.alphabet = alphabet
[docs] def fit(self, X, y=None): """Select Fourier coefficients and compute bin edges for each feature. Parameters ---------- X : array-like, shape = (n_samples, n_timestamps) Data to transform. y : None or array-like, shape = (n_samples,) (default = None) Class labels for each sample. Only used if ``anova=True`` or ``strategy='entropy'.`` """ dft = DiscreteFourierTransform( n_coefs=self.n_coefs, drop_sum=self.drop_sum, anova=self.anova, norm_mean=self.norm_mean, norm_std=self.norm_std ) mcb = MultipleCoefficientBinning( n_bins=self.n_bins, strategy=self.strategy, alphabet=self.alphabet ) self._pipeline = Pipeline([('dft', dft), ('mcb', mcb)]) self._pipeline.fit(X, y) self.support_ = self._pipeline.named_steps['dft'].support_ self.bin_edges_ = self._pipeline.named_steps['mcb'].bin_edges_ return self
[docs] def transform(self, X): """Transform the provided data. Parameters ---------- X : array-like, shape = (n_samples, n_timestamps) Data to transform. Returns ------- X_new : array, shape = (n_samples, n_coefs) Transformed data. """ if SKLEARN_VERSION >= '0.22': check_is_fitted(self) else: check_is_fitted(self, ['support_', 'bin_edges_']) return self._pipeline.transform(X)
[docs] def fit_transform(self, X, y=None): """Fit then transform the provided data. Parameters ---------- X : array-like, shape = (n_samples, n_timestamps) Data to transform. y : None or array-like, shape = (n_samples,) Class labels for each sample. Only used if ``anova=True`` or ``strategy='entropy'.`` Returns ------- X_new : array-like, shape = (n_samples, n_coefs) Transformed data. """ dft = DiscreteFourierTransform( n_coefs=self.n_coefs, drop_sum=self.drop_sum, anova=self.anova, norm_mean=self.norm_mean, norm_std=self.norm_std ) mcb = MultipleCoefficientBinning( n_bins=self.n_bins, strategy=self.strategy, alphabet=self.alphabet ) self._pipeline = Pipeline([('dft', dft), ('mcb', mcb)]) X_sfa = self._pipeline.fit_transform(X, y) self.support_ = self._pipeline.named_steps['dft'].support_ self.bin_edges_ = self._pipeline.named_steps['mcb'].bin_edges_ return X_sfa